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Why Neural Rendering at Facebook?



Facebook Reality Labs

Former Oculus Research, located in Redmond, WA

Work on consumer VR/AR/MR

Graphics team: next generation graphics for VR/AR

* real-time ray casting

* machine learning
* perceptual rendering
®* metaverse ecosystem

...next generation rendering for head-mounted displays

facebook Reality Labs
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Why Neural Rendering?

Prefiltering ° Postfiltering
* Rendering as signal processing
* Prefilterin
efiltering Sampling
« Sampling

 Postfiltering
* Local approximations
* New material models
« Sampling and variance reduction
» Texture compression
« Content creation

» Texture synthesis
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Why Neural Rendering?

Prefiltering ° Postfiltering
Sampling
Optic Disc

* Perceptual imagery Jk

Foves RETINAL SCCENTRICITY DEGHRES

ANGULAR RESOLUTION



aada s

ﬁ._‘..;

Why Neural Rendering?

Prefiltering ° Postfiltering
Sampling
Optic Disc

* Foveation and peripheral degradation /k

Foves RETINAL BCCENTRICITY (DEGHES

ANGULAR RESOLUTION
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Why Neural Rendering?

Prefiltering ° Postfiltering
Sampling

N

Foves RETINAL SCCENTRICITY DEGHRES

Optic Disc

« Saliency and attention

ANGULAR RESOLUTION (PIXELS / DEGREE
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Why Neural Rendering?

Prefiltering ° Postfiltering
Sampling

N

Foves RETINAL ECCENTRICITY (DEGHES

Optic Disc

* Local image consistency

ANGULAR RESOLUTION (PIXELS / DEGREE
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Why Neural Rendering?

Prefiltering ° Postfiltering
Sampling

N

Foves RETINAL ECCENTRICITY (DEGHES

Optic Disc

ANGULAR RESOLUTION (PIXELS / DEGREE

« Temporal consistency
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Why Neural Rendering?

Prefiltering ° Postfiltering
Sampling

A

* High-level scene understanding

Optic Disc

~
-
.
i -
ANGULAR RESOLUTION



Some Prior Art

Prefiltering

* Global illumination with radiance regression functions [Ren13]

Sampling
* End-to-end Sampling Patterns [Leimkuehler18]

Postfiltering
* A machine learning approach for filtering Monte Carlo noise [Kalantari15]

* Kernel-Predicting Convolutional Networks for Denoising Monte Carlo
Renderings [Bako17]

* Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent
Denoising Autoencoder [Chaitanyal7]

Neural scene representation and rendering

* Full CV and CG pipeline [DeepMind18]
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Interactive Reconstruction of Monte Carlo Image

Sequences Using a Recurrent Denoising Autoencoder
work done at Nvidia with Chakravarty R. Alla Chaitanya, Christoph Schied,

Marco Salvi, Aaron Lefohn, Derek Nowrouzezahrai, Timo Aila



Global lllumination in Movies and Games

* Used in games
* Precomputed lighting

* Coarse real-time approximations

* Movies
* Monte Carlo noisy images

* Denoising is essential




Real-Time Reconstruction

- - -
Sl a 4 n o
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Real-Time Reconstruction

* Limited to a few rays per pixel @1080p @30Hz

* Never enough to render an image!
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Real-Time Reconstruction

* Limited to a few rays per pixel @1080p @30Hz Neural reconstruction

* Never enough to render an image!

* Deep learning approach for interactive graphics
» Handle generic effects
— Soft shadows
— Diffuse and specular reflections

— Global illumination (1 bounce)
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Problem Setup: Real-Time Path Tracing




Problem Setup: Real-Time Path Tracing

Rasterize primary hits into a G-Buffer

Deep
Image
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Rasterize primary hits into a G-Buffer

Path tracing from the primary hits
T =<3 1 ray for direct shadows
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Problem Setup: Real-Time Path Tracing

Rasterize primary hits into a G-Buffer

-
- - Path tracing from the primary hits
T~ -3 1 ray for direct shadows
/7 2 rays for indirect (sample + connect)
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Problem Setup: Real-Time Path Tracing

Rasterize primary hits into a G-Buffer
Path tracing from the primary hits
1 ray for direct shadows

2 rays for indirect (sample + connect)

1 direct + 1 indirect path := 1spp

14
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Related Work: Offline

* Sheared filters [Egan11b]
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Related Work: Offline

Sheared filters [Egan11b]

Light field reconstruction [Lehtinen11, Lehtinen12]
Stein’s unbiased risk estimate based filter [Li12]
Denoising using feature and color [Rousselle13]

Local regression models [Bitterli16, Moon15, Moon16]
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Related Work: Interactive
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Related Work: Interactive

 Frequency-space analysis of light transport [Mehta12,
Mehta13, Mehta14, Yan15]
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Related Work: Interactive

Frequency-space analysis of light transport [Mehta12,
Mehta13, Mehta14, Yan15]

Edge-avoiding wavelet filter [Dammertz10]
Guided image filters [Bauszat15]
Texture space [Munkberg16]
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Related Work: Machine Learning




Related Work: Machine Learning

* Image inpainting [Pathak16]

« Single-image super resolution [Ledig16]
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Related Work: Machine Learning

* Image inpainting [Pathak16]

« Single-image super resolution [Ledig16]
« Image classification [Krizhevsky12]

* Image restoration [Mao16]

« Learning based filter for Monte Carlo denoising [Kalantari15]
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Related Work: Machine Learning

* Image inpainting [Pathak16]

« Single-image super resolution [Ledig16]

« Image classification [Krizhevsky12]

* Image restoration [Mao16]

« Learning based filter for Monte Carlo denoising [Kalantari15]

« Disney offline denoiser [Bako17, Vogels18]

17



Input Features

« Additional features from primary visibility (G-Buffer)

Untextured View-space normals Linear depth
illumination and roughness

18
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U-Net Design




U-Net Design

* Encoder and decoder stages of a U-Net for hierarchical representation

1T

Encoder

bi.n

Decoder

||>||>|ﬂ|>

————
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U-Net Design

* Encoder and decoder stages of a U-Net for hierarchical representation

 Skip connections to pass high frequencies and learn residuals

————
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Training sequences

Sponza Diffuse Sponza Glossy Classroom



Training sequences

Sponza Diffuse Sponza Glossy Classroom



1spp
(~70ms)
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Temporal Stability



Recurrent U-Net

————
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Recurrent U-Net

* Recurrent connections retain important features at different scales over time

———
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Recurrent Block




Recurrent Block

* Fully convolutional blocks to support arbitrary image
resolution
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Temporal Training

* Sequence of 7 frames

- - -
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Temporal Training

* Sequence of 7 frames

* Increase loss with number of frames
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Temporal Training

« Sequence of 7 frames
e Increase loss with number of frames

* Augmentation: Play the sequence forward/backward
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Temporal Training

Sequence of 7 frames

Increase loss with number of frames

Augmentation: Play the sequence forward/backward

Augmentation: Each frame can either advance or freeze the camera

28



Loss Function

Spatial loss for more emphasis on dark regions

High Frequency Error Norm loss for stable edges
[Ravishankar11]

Temporal loss for better temporal stability

Final training loss is a weighted combination

29
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Spatial loss for more emphasis on dark regions

1 N

High Frequency Error Norm loss for stable edges
[Ravishankar11]
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Temporal loss for better temporal stability

Final training loss is a weighted combination
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1 N

High Frequency Error Norm loss for stable edges
[Ravishankar11]
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Loss Function

Spatial loss for more emphasis on dark regions Temporal loss for better temporal stability
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High Frequency Error Norm loss for stable edges Final training loss is a weighted combination
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Loss Function

Spatial loss for more emphasis on dark regions
N

|

l

High Frequency Error Norm loss for stable edges
[Ravishankar11]
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Temporal loss for better temporal stability
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Final training loss is a weighted combination
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Recurrent U-Net
with TAA

Recurrent U-Net

U-Net

(image-to-image)



Recurrent U-Net
with TAA

Recurrent U-Net

U-Net

(image-to-image)
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Reconstruction
Results



San Miguel Results
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San Miguel Comparison Results

MC Input AAF EAW SBF Our Reference
o gt - oy TR At&-: p
% iy e PN
- N b x B
v'd w4
RMSE: 0.088 RMSE: 0.087  RMSE: 0.055 N

RMSE: 0.079



! sample/pixel input




! sample/pixel input




! sample/pixel input




Red Room Results




Red Room Comparison Results

MC Input EAW SBF Our Reference

RMSE: 0.041 RMSE: 0.052  RMSE: 0.029

36



GENERALIZATION:
OFFLINE 256SPP INPUT




Horse Room, 256spp
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Horse Room ComparisonS

MC Input EAW SBF NFOR Our Reference

RMSE: 0.094 RMSE: 0.040 RMSE: 0.018 RMSE: 0.034
10.3ms 74.2ms 110s 54.9ms




GENERALIZATION:
SPECULAR MATERIALS










Performance

* Optimized CUDA and cuDNN inference
* Kudos to Jon Hasselgren and Jacob Munkberg

« 54.9ms on NVIDIA Titan X (Pascal) on a 720p image

* Volta is 3x faster, Turing is 3x3=9x faster?

42
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Cornell Box Sponza Classroom San Miguel



Conclusion

* Deep learning application to 1spp reconstruction

- - -
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— Recurrent U-Net for temporal stability
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Conclusion

* Deep learning application to 1spp reconstruction
— Recurrent U-Net for temporal stability

— Interactive performance

— Follow up work

— Deep Adaptive Sampling for Low Sample Count Rendering [Kuznetsov18]
— OptiX 5 denoiser is based on this work

— 19ms performance on Titan V (1080p)

— Wide adaption in interactive rendering

— Limited to image-to-image, firefly filter required

44
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DeepFocus
with Lei Xiao, Alex Fix, Matt Chapman, Doug Lanman

at Facebook Reality Labs



Gaze-Contingent Varifocal Display
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Gaze-Contingent Varifocal Display
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Near-Eye Light Field Display
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Near-Eye Light Field Display
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Accommodation-Supporting Displays

Challenge: Real-Time Physically-Accurate Rendering and Optimization

Gaze-Contingent Varifocal Display Multifocal Display Near-Eye Light Field Display

49
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Varifocal HMDs Multifocal HMDs Light Field HMDs

Defocus Blur Multilayer Decompositions Multiview Imagery
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DeepFocus Network
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Volume-Preserving Interleaving Layer

\lg
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Volume-Preserving Interleaving Layer
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Volume-Preserving Interleaving Layer




Volume-Preserving Interleaving Layer




Volume-Preserving Interleaving Layer




Volume-Preserving Interleaving Layer
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Random 3D scenes RGB-D



Random 3D scenes RGB-D






DeepFocus: Gaze-Contingent Defocus Blur from RGB-,D/’M\

Residual Connecton Residual Connection Rosidual Connection

/ '.' ' ' " ' ' . ' :

OUTPUT

9.8ms, 1024x1024

RGB, Depth, CoC Map Gaze-Contingent Defocus Blur



Input RGB DeepFocus Ground truth




Input RGB DeepFocus Ground truth




DeepFous Ground tuth
37.0dB 45.6dB 63
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Input Color Image
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Multifocal Displays
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Multifocal Displays

- ==

Solve lterative Optimization Optimized Multilayers

[Narain et al. 2015, Mercier et al. 2017]
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Multifocal Displays

COMPUTATIONALLY EXPENSIVE

st. 0<y, <1, i=1.2 ... M,

|
\ 3
/
g R 7’

Ll i,

3D scene Render Dense Focal Stacks Solve Iterative Optimization Optimized Multilayers

[Narain et al. 2015, Mercier et al. 2017]
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Res-dual Cornecton Residual Connecson Rosio.al Connecton
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OUTPUT

10.0ms, 1024x1024

RGB and Depth Multilayer Decomposition









DeepFocus: Multilayer Decomposition from Dense Fo tacks

® Akeley et al.
© Mercier et al.
# Narain et al.

40
PSNR (dB)

35 - © DeepFocus
30 '—.—//\\
1 3 5 7 9 11 13 15 17 19 21

focal distance (D)

13.3 I Narain et al.
7.5 Mercier et al.
0.01 W DeepFocus

Runtime (sec)
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Near-Eye Light Field Displays

81 RGB-D images
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Residual Connecton Residual Connection Rosidual Connection
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OUTPUT

19.7ms, 81x512x512

Sparse RGB and Depth Multiview Imagery












RGB-D Limitations

Input RGB

Input Depth

77



RGB-D Limitations

Ground Truth (near focus)
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Conclusion

Resdual Connechon Resdual Carnection Resudual Connecton
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Outlook



Machine Learning: Challenges

« Easy to get to 80%, very hard to get to 95%

* Not a silver bullet!
* Inversion is hard
 Validation/coverage is hard
* Worst case accuracy?
* Hyperparameters!
* Keep your experiments organized

* Needs more compute

81



Machine Learning: Applications

* New framework for rendering
* Approximation
« Compression
* Learning distribution

* Closest to human perception

» Differentiable programming as a generic optimization framework for existing methods, e.g. see [Li18]
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Thank You!

Opportunities in Redmond, WA:
* Research Scientist, Machine Learning and Graphics

* Research Scientist, Materials and Multiscale Appearance

* Postdoctoral Research Scientist, Graphics

* Graphics Compression Lead

* Cloud Streaming Network Engineer

* PhD 2019 Internships

Graphics team at Facebook Reality Labs is seeking researchers and engineers for next generation graphics for
virtual and augmented reality: ray tracing, metaverse ecosystem, perceptual rendering, and machine learning.

Contact me (anton.kaplanyan@oculus.com) or Nicole Doyle (nicole.doyle@oculus.com) if you are interested.
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Training Loss
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Untextured + normal + depth
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